Algebra 2 Skills Review Packet

Name ______
Date _____

Make sure you look at the reminders or examples before each set of problems to jog your memory!

I. Solving Linear Equations

1. Eliminate parentheses	5(2x-2) = 4 - 2x + 2x	+ 10
2. Combine like terms	10x - 10 = 4 - 2x +	$10 \rightarrow$ Eliminate parenthesis
3. Eliminate terms by $+$ or $-$	10x - 10 = 14 - 2x	\rightarrow Combine like terms
4. Isolate variable by $*$ or \div	+2x $+2x$	
	12x - 10 = 14	
	+10 +10	\rightarrow Eliminate terms by + or -
	$\underline{12x} = \underline{24}$	
	12 12 }	\rightarrow Isolate variable by \div
	x = 2	,

Solve			
$1. \ \frac{2}{3}x - 1 = x + 7$	2. $5x - 2(3 - x) = -(4 - x)$		
3. $6(2x-1) + 3 = 6(2-x) - 1$	$4. \ \frac{2}{3}x - 2 = \frac{3}{4}x + 5$		
5. A stockbroker earns a base salary of \$40,000 plus 5% of the total value of the stocks, mutual funds, and other investments that the stockbroker sells. Last year, the stockbroker earned \$71,750. What was the total value of the investments the stockbroker sold?			
II. Solving Inequalities			

Follow same procedure as in solving equations *<u>EXCEPT</u> in the last step. If you multiply or divide by a negative number, Be sure to reverse the direction of the inequality signs.

Example 1: $\frac{3x}{3} > \frac{-18}{3}$	Example 2: $\frac{-3x}{-3} > \frac{18}{-3}$
<i>x</i> > - 6	<i>x</i> < -6

Solve			
6. $-6 - x \ge -7x + 12$	7. $5(2x-3) \ge -15 + 20x$		
8. You have \$50 and are going to an amusement part food. You want to play a game that costs \$0.75. Wr numbers of times you can play the game. If you play have spent the entire \$50? Explain.	k. You spend \$25 for the entrance fee and \$15 for ite and solve an inequality to find the possible the game the maximum number of times, will you		

III. Solving Absolute Value Equations and Inequalities

 Isolate the Absolute Value Set up 2 equations/inequalities Solve each equation/inequality Write your final answer in { } or as a compound inequality. 	$2 x-6 +3 \le 11$ $2 x-6 \le 8$ $ x-6 \le 4$ Isolate the absolute value $ x-6 \le 4$ $x-6 \le 4 \text{ and } x-6 \ge -4 \Rightarrow \text{ Set up 2 inequalities}$ $x \le 10 \text{ and } x \ge 2 \Rightarrow \text{ Solve each inequality}$ $2 \le x \le 10 \Rightarrow \text{ Write your final answer}$ as a compound inequality

Solve			
9. $ 2x-5 -4=5$	$103\left \frac{2}{3}x - 9\right = -54$		
11. $4 10-3x +5 \ge 73$	12. $\left \frac{1}{4}x + 10\right < 18$		

IV. Graphing Linear Equations

To graph a linear equation:

3

- (1) Put the equation in slope-intercept form
- (2) Plot the y-intercept on the y-axis
- (3) Rise and run with the slope from the y-intercept across the entire graph
- (ex1) 2x 3y = 6 Subtract x from both sides of the equation

$$-3y = -2x + 6$$
 Divide both sides of the equation by the coefficient of y

y = 2x - 2 Use this equation to graph the line

The "b" (y-intercept) is -2 so graph this point first on the y - axis The "m" (slope) is $\frac{2}{3}$ so "rise" 2 and "run" 3 from the y-intercept

17. The cost C (in dollars) of placing a color advertisement in a newspaper can be modeled by C=7n+20 where n is the number of lines in the ad. Graph the equation. What do the slope and C-intercept represent?

V. Graphing Linear Inequalities

Steps:

- 1. Write the inequality in Slope-Intercept Form
- 2. Graph the line associated with the inequality (Solid or Dashed)
- 3. Shade the appropriate region (Test an ordered pair)

22. You have relatives living in both the US and Mexico. You are given a prepaid phone card worth \$50. Calls within the US cost \$0.16 per minute and calls to Mexico cost \$0.44 per minute.

a) Write a linear inequality in two variables to represent the number of minutes you can use for calls within the US and for calls to Mexico.

b) Graph the inequality and discuss 3 possible solutions in the context of the real-life situation.

VI. Writing Equations of Lines	
Slope intercept form of the equation of a line: y	y = mx + b
m is slope and b is the y intercept	
To write an equation of the line:	
(1) Determine the slope	
(2) Substitute an ordered pair in for x and y to find	db
(3) Write the equation using $y = mx + b$	
23. Find the slope and the y – intercept of	24. Find the slope and y-intercept of
y = -2x + 4	2x - 3y = -12
25. Write an equation of the line with slope = 4	26. Write an equation of the line with $m = -2$ and
and y-intercept is -3	goes through the point (-2, 6)
27. Write an equation of the line that goes through	28. Parallel to the line $y = -2x + 3$ and contains
the points $(0, 2)$ and $(2, 0)$.	the point (-2, -1)
29. Perpendicular to the line $y = -2x + 3$ and	30. Slope = 0 and contains the point $(-10, 17)$
contains the point (-2, -1)	

31. The table gives the price p (in cents) of a first-class stamp over time where t is the number of years since 1970. Plot the points onto a coordinate plane. State whether the correlation is positive or negative. Then, write the equation of the Best-Fitting Line.

t	1	4	5	8	11	11	15	18	21	25	29
р	8	10	13	15	18	20	22	25	29	32	33

VII. Relations/Functions

Relation:	Function: The relation is a function if there is
A relation is a mapping, or pairing of input	exactly one output for each input.
values with output values.	
	Is the relation a function?
<u>Domain</u> : The set of input values	(0, -4), (1, 4), (2, -3), (4, -1), (4, 2)
<u>Range</u> : The set of output values	Answer: No, because the input 4 has more than
	one output: -1 and 2
Example: (0, -4), (1, 4), (2, -3), (4, -1), (4, 2)	
	Evaluate the function when $x = -3$:
<u>Domain</u> : {0, 1, 2, 4}	
<u>Range</u> : {-4, 4, -3, -1, 2}	a) $f(x) = x - 4$ b) $g(x) = x^2 - 2x + 5$
	$f(-3) = -3 - 4$ $g(-3) = (-3)^2 - 2(-3) + 5$
	= -7 $= 9 + 6 + 5$
	= 20

32. {(-5, 5), (-5,-5), (0,3), (0 a. State the domain.	, -3), (5, 0)}	 33. {(-4, 2), (-3, -3), (-2, 0), (4, 2), (2, a. State the domain. 	4)}
b. State the range.		b. State the range.	
c. Is the relation a function?	? Why or why not?	c. Is the relation a function? Why or	why not?
34. $f(x) = \frac{6}{x^2 - 4}$ a) find f(4)	b) find f(-7)	35. $g(x) = x^2 + 5$ a) find g(-6) b) find $g\left(\frac{-2}{2}\right)$	$\left(\frac{1}{2}\right)$

VIII:	Solving	Systems	of Eq	juations
-------	---------	----------------	-------	----------

Solving Systems of Equations				
Solving Systems of Equations by	Example: Solve by graphing $x - 3y = -6$			
Graphing	x + y = -2			
 Put each equation in slope-intercept	Step 1: Put each equation in slope-intercept form:			
form (y = mx + b) Graph each equation on the same graph Find where the lines intersect. This is	$\mathbf{x} - 3\mathbf{y} = -6 \rightarrow \mathbf{y} = \frac{1}{3}\mathbf{x} + 2 \rightarrow \mathbf{m} = \frac{1}{3}, \mathbf{b} = 2$			
your solution. a. If the lines are parallel → "no	$\mathbf{x} + \mathbf{y} = -2 \rightarrow \mathbf{y} = -\mathbf{x} - 2 \rightarrow \mathbf{m} = -1, \mathbf{b} = -2$			
solution" b. If the lines are the same →	Step 2:			
"infinitely many solutions".	Step 3: Solution: (-3, 1)			
Solving Systems of Equations using	Example: Solve $3x + 4y = -4$ using substitution			
Substitution	x + 2y = 2			
 Solve one of the equations for one of its variables Substitute the expression from Step 1 into the other equation and solve for the other variable Substitute the value from Step 2 into the revised equation from Step 1 and solve. 	Step 1: The "x" in x + 2y = 2 will be easy to solve for: x + 2y = 2 \rightarrow subtract 2y from both sides \rightarrow x = -2y + 2 Step 2: Substitute x = -2y + 2 into the other original equation 3x + 4y = -4 3(-2y + 2) + 4y = -4 -6y + 6 + 4y = -4 -2y = -10 y = 5			
	Step 3: Insert the value from Step 2 (y = 5) into x = $-2y + 2$ x = $-2(5) + 2 \rightarrow x = -10 + 2 \rightarrow x = -8$ Solution: x = -8 , y = 5, which we write as (-8 , 5)			

Solving Systems of Equations using		Example:	Solving using Elimination $2x - 6y = 19$
Elimination (aka Linear Combinations)			$-3\mathbf{x} + 2\mathbf{y} = 10$
 1. 2. 3. 4. 	Line up the like terms and the equal signs vertically Multiply one or both of the equations by a constant to obtain coefficients that differ only in sign for one of the variables. Add the revised equations from Step 2. Combining all like terms will eliminate one of the variables. Solve for the remaining variable. Substitute your answer from Step 3 into either of the original equations and solve for the other variable.	Step 2: M opposites 2 -3 Step 3: A Step 4: Step 4: Step 2x	ultiply in constants to make the coefficients of x become (6x and -6x) $x - 6y = 19 \Rightarrow$ multiply by $3 \Rightarrow 6x - 18y = 57$ $3x + 2y = 10 \Rightarrow$ multiply by $2 \Rightarrow -6x + 4y = 20$ dd the two revised equations (6x - 18y = 57) + (-6x + 4y = 20) $-14y = 77 \Rightarrow$ divide by $-14 \Rightarrow y = -77/_{14} = -11/_{2}$ ubstitute $y = -11/_{2}$ into an original eqn: i.e. $2x - 6y = 19$ $x - 6(-11/_{2}) = 19 \Rightarrow 2x + 33 = 19 \Rightarrow 2x = -14 \Rightarrow x = -7$
		Solution:	$x = -7$ and $y = -\frac{11}{2}$, which we write as $(-7, -\frac{11}{2})$
		S	olve
36. Solve by graphing: $-4x + y = -3x + 3y = 1$			37. Solve using substitution $3x - y = 4$ 5x + 3y = 9
38. Solve using elimination $5x + 6y = -16$ 2x + 10y = 5 39. Solve -2x + 4x - 2 40. Set-up and solve a system of equations for this problem: concert. Student tickets cost \$4 and general admission tickets			 39. Solve using substitution or elimination: -2x + y = 6 4x - 2y = 5 <i>this problem</i> : You are selling tickets for a high school admission tickets cost \$6. You sell 450 tickets and
	collect \$2340. How many of each	type of tic	ket did you sell?

Algebra 2 Skills Review Packet

IX. Simplifying exponential expressions Properties are listed below. There should be no negative exponents in your answer.

Examples: 1. $x^2 \bullet x^3 = x^5$	2 . $(x^2)^3 = x^6$	3. $x^{-2} = \frac{1}{x^2}$	4. $\frac{x^5}{x^3} = x^2$
43. $3(x^2y^{-3})^4 =$		$44. \frac{3xy^2}{4x^{-2}y^3} =$	
45. $\frac{4^{0} x^{3} y}{-3xy^{6}} =$		$46. \ \frac{(3x^3y^4)(-2x^{-2}z^5)}{4x^{-4}} =$	

X. Combine like terms

47. $(2x^2 + 1) + (3x^2 + 6x - 2) =$	48. $(2x^2y - 6y) - (4x^2 + 2y) =$

XI. Multiply

Monomial * Binomial or Trinomial – Use Distributive Property

Binomial * Trinomial – Use Distributive Property

Binomial * Binomial – Use FOIL

49. $3x(x^3-6x+7)$	50. $x(x+2)(x^2+1) =$
51. $(2x+6)(3x+4y+6) =$	52. $(x^2y - 3y)(2xy + 3y) =$

XII. Factor Completely

53. $x^3 - x^2 - 4x + 4$	54. $4x - 28x^2$
55. $x^4 + 5x^2 - 6$	56. $3x^2 - 2x - 8$
57. $x^2 - 64$	58. $x^2 + 25$